SPONGY (SPam ONtoloGY): Email Classification Using Two-Level Dynamic Ontology

نویسنده

  • Seongwook Youn
چکیده

Email is one of common communication methods between people on the Internet. However, the increase of email misuse/abuse has resulted in an increasing volume of spam emails over recent years. An experimental system has been designed and implemented with the hypothesis that this method would outperform existing techniques, and the experimental results showed that indeed the proposed ontology-based approach improves spam filtering accuracy significantly. In this paper, two levels of ontology spam filters were implemented: a first level global ontology filter and a second level user-customized ontology filter. The use of the global ontology filter showed about 91% of spam filtered, which is comparable with other methods. The user-customized ontology filter was created based on the specific user's background as well as the filtering mechanism used in the global ontology filter creation. The main contributions of the paper are (1) to introduce an ontology-based multilevel filtering technique that uses both a global ontology and an individual filter for each user to increase spam filtering accuracy and (2) to create a spam filter in the form of ontology, which is user-customized, scalable, and modularized, so that it can be embedded to many other systems for better performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spam Email Classification using an Adaptive Ontology

Email has become one of the fastest and most economical forms of communication. However, the increase of email users has resulted in the dramatic increase of spam emails during the past few years. As spammers always try to find a way to evade existing filters, new filters need to be developed to catch spam. Ontologies allow for machine-understandable semantics of data. It is important to share ...

متن کامل

An Ontology Enhanced Parallel SVM for Fast Spam Filtering

Spam, under a variety of shapes and forms, continues to inflict increased damage. Varying approaches including Support Vector Machine (SVM) techniques have been proposed for spam filter training and classification. However, SVM training is a computationally intensive process. This paper presents a MapReduce based parallel SVM algorithm for scalable spam filter training. By distributing, process...

متن کامل

Improving Hungarian Text Categorization Using Domain-Specific Ontology

The aim of Text Categorization is to automatically assign documents to a set of predefined categories. The prevailing approach is making use of a collection of precategorized examples for the induction of a document classifier through learning methods. In this paper we introduce a method which combines state-of-the-art learning techniques with background knowledge. We have used KAON ontology fo...

متن کامل

Improving the methods of email classification based on words ontology

The Internet has dramatically changed the relationship among people and their relationships with others people and made the valuable information available for the users. Email is the service, which the Internet provides today for its own users; this service has attracted most of the users' attention due to the low cost. Along with the numerous benefits of Email, one of the weaknesses of this se...

متن کامل

Ontology Based SMS Controller for Smart Phones

Text analysis includes lexical analysis of the text and has been widely studied and used in diverse applications. In the last decade, researchers have proposed many efficient solutions to analyze / classify large text dataset, however, analysis / classification of short text is still a challenge because 1) the data is very sparse 2) It contains noise words and 3) It is difficult to understand t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014